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Starting from an array of four-leg Hubbard ladders weakly doped away from half-filling and weakly coupled
by interladder tunneling, we derive an effective low-energy model which contains a partially truncated Fermi
surface and a well-defined cooperon excitation formed by a bound pair of holes. An attractive interaction in the
Cooper channel is generated on the Fermi surface through virtual scattering into the cooperon state. Although
the model is derived in the weak coupling limit of a four-leg ladder array, an examination of exact results on
finite clusters for the strong coupling t-J model suggests the essential features are also present for a strong
coupling Hubbard model on a square lattice near half-filling.
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I. INTRODUCTION

The microscopic mechanism that generates high-
temperature superconductivity in the cuprates continues to be
controversial. Among the many theoretical proposals, one is
based on the analogy with heavy-fermion metals where a
superconducting dome is observed surrounding the quantum-
critical point �QCP� that arises as antiferromagnetism is
suppressed by an external parameter such as pressure.1 In
this case the pairing glue arises from the exchange of the soft
longitudinal antiferromagnetic fluctuations in the vicinity of
the QCP. In the cuprates doping plays the role of the external
parameter and there are several proposals for the nature
of the QCP that appears near optimal doping involving
fluctuations in various order parameters, e.g., nematic,2

d-density wave,3 and orbital currents4 in addition to
antiferromagnetism.5 A second set of theories goes back to
Anderson’s very early proposal that the strong singlet
nearest-neighbor correlations in the two-dimensional �2D�
Heisenberg antiferromagnet generates pairing when doped
holes are introduced. The advocates of this resonant valence
bond �RVB� mechanism point to the strong asymmetry in the
cuprate phase diagram between the physical behavior on the
underdoped and overdoped sides of optimal doping and the
QCP. This contrasts strongly with the symmetric dome ob-
served in heavy fermions. Further the highly anomalous
physical properties that characterize the pseudogap phase at
underdoping are associated with a short-range spin liquid in
the cleanest cuprate materials, e.g., YBa2Cu4O8 �Ref. 6� and
HgBa2CuO4+x.

7 Nonetheless strong correlations and the ab-
sence of a broken translational symmetry in the pseudogap
phase have proved to be formidable obstacles to constructing
a comprehensive microscopic RVB theory for underdoped
cuprates. For more details see several recent reviews.8–11

Several years ago we proposed a two-dimensional array
of weakly coupled two-leg Hubbard ladders as an example of
a model where occurs a truncation of the full Fermi surface
to pockets associated with hole or electron doping in a sys-
tem without broken translational symmetry along the
ladders.12 Subsequently this model led to a phenomenologi-
cal ansatz for the propagator in underdoped cuprates starting
from a renormalized mean-field description of an undoped

RVB spin-liquid insulator.13 This phenomenological propa-
gator has been recently used successfully to fit a range of
experiments covering many anomalous properties of the
pseudogap phase.14–20 In this paper we extend our earlier
analysis to the case of an array of lightly doped four-leg
Hubbard ladders with an onsite weak interaction. Our goal is
to produce both a more plausible Fermi surface than that
arrived at by coupling two-leg ladders together as well as
constructing a tractable two-dimensional model with a par-
tially truncated Fermi surface in which d-wave pairing arises
on the residual Fermi surface through scattering in the Coo-
per channel.

Our use of coupled Hubbard ladders to model features of
the cuprates follows a long history. It has long been sug-
gested that the physics of certain cuprates is intimately tied
to the appearance of alternating hole rich and hole free
regions,21–23 a result that has been viewed as the action of
long-range Coulomb interactions.24,25 In Ref. 25, the authors
imagined the emergence of a spin gap in the hole free re-
gions as a precursor to pairing. It was then natural to model
such regions as two-leg Hubbard ladders. In later work
�Ref. 26�, this idea was further exploited by studying a
model of an array of two-leg Hubbard ladders with alternat-
ing doping. The use of such alternating arrays of two-leg
ladders was again employed in attempts to understand the
striped magnetic structure of L1.875B0.125CuO4.27–30

A key feature of the present model is the presence of a
finite-energy cooperon resonance in the pseudogap which is
generated in association with the partial truncation of the
Fermi surface. An important question is whether this feature
is an artifact limited to the coupled four-leg Hubbard ladder
model studied here. We examine this question in the con-
cluding section, where we present evidence that a cooperon
resonance appears in two dimensions in a lightly doped
square lattice. In the case of weak to moderately strong in-
teractions, earlier numerical functional renormalization-
group calculations on the two-dimensional Hubbard
model31,32 were interpreted as pointing toward a similar pair-
ing mechanism. In the case of strong interactions, the most
reliable results are obtained by exact diagonalization of finite
clusters. Studies on the t-J model in clusters up to 32 sites
found a finite energy d-wave cooperon resonance at light
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hole doping.33–35 These calculations lead us to conclude that
the key features of our four-leg ladder model are not limited
to this particular model but are also present in the two-
dimensional square lattice relevant to the cuprate supercon-
ductors.

The paper is organized as follows. We begin by reviewing
the facts about four-leg Hubbard ladders needed by us in this
study. Having done so, we then consider two scenarios in
which coupled arrays of such ladders possessing a truncated
Fermi-surface lead to superconductivity. In one scenario,
much like in Ref. 12, a Fermi surface consisting of hole
pockets goes superconducting due to residual interactions
among the quasiholes and the finite-energy cooperons. In the
second scenario a similar story plays out but for the hole
pockets having evolved into an anisotropic 2D Fermi sur-
face. In both scenarios we make an estimate for the transition
temperature as a function of doping. We end with a discus-
sion of the relation between our results and numerical studies
of two dimensional t-J models.

II. FOUR-LEG HUBBARD LADDERS

The properties of a single four-leg Hubbard ladder with
open boundaries have been studied extensively in both the
weak and strong coupling limits. We consider here the
former with equal nearest-neighbor hopping t0, along the
legs and rungs. In this case the four bands split into two band
pairs. The inner pair, A1,2, are standing waves on the rungs
with wave vectors �2� /5,3� /5�. At half-filling the
corresponding Fermi wave vectors are kFA1

= �3� /5 and
kFA2

= �2� /5 leading to a common Fermi velocity,
vFA=2t0 sin�2� /5�. The outer band pair, B1,2, have Fermi
wave vectors KFB2

= �� /5 and KFB1
= �4� /5 and a smaller

Fermi velocity, vFB=2t0 sin�� /5�. See Fig. 1.
We obtain a band structure of four bands with energies

EA1,2
�k� = ���k� � 2t0 cos�2�/5� ,

EB1,2
�k� = ���k� � 2t0 cos��/5� , �2.1�

where ���k� represents the dispersion along the ladder. The
annihilation �creation� operators of electrons of the outer and

inner bands, denoted as B1,2 ,B1,2
† and A1,2 ,A1,2

† , respectively,
are

B1 = �
n=1

4

sin��n/5�cn,

B2 = �
n=1

4

sin�4�n/5�cn,

A1 = �
n=1

4

sin�2�n/5�cn,

A2 = �
n=1

4

sin�3�n/5�cn, �2.2�

where cn is the corresponding annihilation operator of an
electron on the nth leg of the ladder.

Close to half-filling the Fermi velocities of the outer band
pair labeled by B are smaller than those of the inner bands
labeled by A so that in the presence of interactions the effec-
tive dimensionless coupling constants for electrons in the
inner bands are smaller than those for the outer bands. In the
weak coupling limit, i.e., an onsite interaction characterized
by U� t, this Fermi velocity difference leads to a large dif-
ference in the characteristic energy scales and to a decou-
pling of the RG flows of the two band pairs. The outer band
pair has the larger critical energy scale and flows to strong
coupling first as the energy scale is lowered.36–38 The inner
band pair has a lower critical scale. Therefore in the first
approximation one can treat inner and outer bands of indi-
vidual four-leg ladders as decoupled from each other. Then
each band pair will effectively constitute a two-leg ladder. It
is well known that two-leg ladders acquire spectral gaps for
quite general interaction patterns. For the inner bands the
smaller dimensionless couplings lead to smaller spectral
gaps. At half-filling each band pair is exactly half-filled and
behaves as a half-filled two leg Hubbard ladder. The differ-
ence in the energy scales leads to a finite doping range
x�xc where all the doped holes enter the inner band pair and
the outer band pair remains exactly half-filled. We note in
passing that similar behavior is found also in the strong cou-
pling limit, U� t.39

Given that a four-leg ladder can be reduced to two two-
leg ladders, we will now recall some basic facts about two-
leg ladders. For general interactions they become either Lut-
tinger liquids or dynamically generate spectral gaps. In the
latter case an increased symmetry appears at small energies
where a half-filled two-leg ladder can be well described by
the O�8� Gross-Neveu �GN� model.40 The Gross-Neveu
model is exactly solvable for all semisimple symmetry
groups and a great deal is known about its thermodynamics
and correlation functions. In the SO�8� case the correlation
functions were studied in Refs. 41 and 42. Since the model
itself has Lorentz symmetry, all excitation branches have
relativistic dispersion laws

o
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FIG. 1. On the lhs of the figure is pictured a four-leg ladder with
equal hopping along and between the legs of the ladder. On the rhs
are pictured the corresponding four bands, A1,2, B1,2 of such a
ladder.
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E�p� = ��vk�2 + M2. �2.3�

The spectrum consists of three octets of particles of mass
M =� and a multiplet of 29 excitons with mass M =�3�
�here � is the mass scale of the ladder�. Two octets consist of
quasiparticles of different chirality transforming according to
the two irreducible spinor representations of SO�8� while the
third octet consists of vector particles. The latter include
magnetic excitations as well as the cooperon �a particle with
charge �2e�. The 16 kink fields, carrying charge, spin, orbit,
and parity indices, are direct descendants of the original elec-
tron lattice operators on the ladders.

The SO�8� GN model describes several different phases
related to one another by particle-hole transformations.
Which phase is realized depends on the bare interaction. In
this paper we assume that it is in the so-called D-Mott phase
�in the terminology of Ref. 40�. On the two two-leg ladders
�A and B�, the superconducting order parameters are given
by

�A = A1,↑A1,↓ − A2,↑A2,↓,

�B = B1,↑B1,↓ − B2,↑B2,↓. �2.4�

The distinct feature of the half-filled ladder is that this order
parameter is purely real and has a Z2 symmetry. However,
the symmetry is restored to U�1� and the phase stiffness be-
comes nonzero as soon as doping is introduced. It is an in-
teresting feature of the SO�8� GN model that the only mode
which becomes gapless at finite doping is the cooperon. Nei-
ther magnetic excitations nor quasiparticles become
gapless.43 When the doping increases the SO�8� GN model
gradually crosses over to the SO�6� GN one plus the U�1�
Gaussian model. The latter model describes the fluctuations
of the superconducting phase. The Cooper field
	=	0ei�
/2� has a weakly fluctuation amplitude 	0 and a
strongly fluctuating phase whose dynamics is described the
effective low-energy bosonized Lagrangian density

L =
K

8�
�v−1�����2 + v��x��2� , �2.5�

where 
 is the field dual to �. �Here—according to Ref.
44—the Luttinger parameter K depends weakly on doping
and is always in the range 1K0.9. On the other hand, the
phase velocity is strongly doping dependent.�

For values of doping close to the cooperon band edge
���−� /2���� spectral curvature is important and the action
given in Eq. �2.5� is inadequate. Then for K	1 a better
description of the cooperon dynamics is given by the sine-
Gordon model

L =
1

8�
�vF

−1�����2 + vF��x� − 4��2� −
M

2
cos��� �2.6�

with M2=�2−4�2. In this case, the above effective action
covers a larger energy range than Eq. �2.5� whose validity is
restricted to the energy range ���−� /2�. However Eq. �2.5�
can be obtained as a low energy limit of Eq. �2.6�.

A qualitative understanding of how Eq. �2.6� arises can be
obtained by employing the following argument. Let us write
the SO�8� Gross-Neveu model in terms of fundamental fer-
mions �which are nonlocal with respect to the original fermi-
ons in the problem�. Then the interaction term has the form

Hint
SO�8� = 2g
�

a

�a
†�y�a�2

. �2.7�

Here a=1,4, �a= ��a
R ,�a

L�, and �y is a Pauli matrix acting in
R-L space. The four fundamental fermions correspond to the
different degrees of freedom in SO�8�: charge, spin, orbital,
and parity. The cooperon �charge� we take to be given by �1.
With a finite chemical potential lowering the cooperon gap,
the fluctuations of the cooperon will be strongest. Invoking
mean-field theory, we thus replace �a

†�y�a for a=2,3 ,4 by
its expectation value. The resulting bosonization of the re-
maining degree of freedom, �1, results in the sine-Gordon
model Eq. �2.6�.

III. SUPERCONDUCTIVITY OF ARRAYS OF FOUR-LEG
LADDERS: TWO SCENARIOS

Having elucidated the properties of individual four-leg
ladders, we now consider an array of such ladders aligned
along the x axis. We assume initially that the electron-
electron interaction acts only inside individual ladders and is
much smaller than the bandwidth W�2t0. It is also assumed
that W� t� �the interladder tunneling�. We imagine two sce-
narios. In the first we assume t� is on the same order as �A,
the gap on the inner bands of the four-leg ladder, but much
smaller than �B, the gap on the outer bands. In this case
coupling the ladders together lead to small Fermi pockets,
very much like in Ref. 12. However in this case the pockets
are found near �� /2, �� /2. The residual coupling between
these Fermi pockets and the A cooperons then leads to su-
perconductivity in the A bands. And because of a proximity
effect, the superconductivity of the A bands induces super-
conductivity in the B bands.

In the second scenario, we assume �A� t���B. In this
case t� wipes out the effects of interactions on the A bands.
Coupling them together then gives us an anisotropic two-
dimensional Fermi liquid. But as t� is much smaller than �B,
the cooperons on the outer bands at zeroth order remain un-
perturbed. The coupling then between the anisotropic Fermi
liquid and the B cooperons induces superconductivity in the
system as a whole. This superconductivity is d wave in na-
ture. We now elaborate on these two scenarios.

A. Scenario I

We treat the interladder hopping through a random phase
approximation �RPA� analysis of the interladder hopping. To
justify the use of the RPA, the form of the hopping is taken
to be long range

Hinterladder = − �
n�m,a,b

ta,b
n,mcn,a

† cm,b, �3.1�

where a ,b=1, . . . ,4 run over the legs of an individual ladder
and n and m mark the nth and mth ladders. See Fig. 2. By
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particle-hole symmetry the hopping is assumed to have
peaks both near k= �0,0� and k=G /2 where G= �0,� /2� is
the inverse lattice vector perpendicular to the ladders. In par-
ticular the hopping takes the form

ta,b
n,m = �1 − �− 1�n−m�fab�m − n� , �3.2�

where fab�m−n�= fba�n−m� and fab�0�=0 �i.e., no �addi-
tional� hopping within a ladder�.

By treating Hinterladder in an RPA approach, we find that the
single-particle Green’s function takes the form

Gret
2D RPA��,kx,ky� = �1�ky�GA1

2D��,kx,ky�

+ �2�ky�GA2

2D��,kx,ky� ,

GAi

2D��,kx,ky� =
GAi

��,kx�

1 + GAi
��,kx�ti

ef f�ky�
, �3.3�

where

t1
ef f�ky� = 2�

n0
cos�4ky��2�s1

2 + s2
2�t1,1

n,0 + �2s1s2 − s1
2��t1,2

n,0 + t2,1
n,0�

− 2s1s2�t3,1
n,0 + t1,3

n,0� − s2
2�t1,4

n,0 + t4,1
n,0�� ,

t2
ef f�ky� = 2�

n0
cos�4ky��2�s1

2 + s2
2�t1,1

n,0 − �2s1s2 − s1
2��t1,2

n,0 + t2,1
n,0�

− 2s1s2�t3,1
n,0 + t1,3

n,0� + s2
2�t1,4

n,0 + t4,1
n,0�� ,

�1�ky� = 2�s1
2 + s2

2� + 2�2s1s2 − s1
2�cos�ky� − 4s1s2cos�2ky�

− 2s2
2cos�3ky� ,

�2�ky� = 2�s1
2 + s2

2� − 2�2s1s2 − s1
2�cos�ky� − 4s1s2 cos�2ky�

+ 2s2
2 cos�3ky� �3.4�

and s1=sin�� /5� and s2=sin�2� /5�. We have assumed the
hopping is real and that the low-energy contribution to
G2D RPA comes from the A bands as �A��B. Thus
GA1�� ,kx� /GA2�� ,kx� are the Green’s functions of the
A-band electrons on a given four-leg ladder. As we have
discussed in the previous section GA1 /GA2 are no more than
the bonding/antibonding electron Green’s functions for a
two-leg ladder. The RPA does not mix GA1 and GA2 as the
weights of the two are found near differing Fermi wave vec-
tors �i.e., we can take GA1�k�GA2�k��0 safely for all k�. The
presence of �1�ky� and �2�ky� act as structure factors which
cause the quasiparticle weight at various ky to be negligible.
While the denominator of G2D RPA has the periodicity of the
reduced Brillouin zone, i.e., ky and ky +� /2 are identified�
these structure functions merely have the periodicity of the
original zone, i.e., ky and ky +2� are identified�.

The Green’s functions for A1 /A2 at zero chemical poten-
tial are given by

GAi
��,kx� = Zi

� + EAi
�kx�

�2 − EAi

2 �kx� − �A
2 , �3.5�

where the EAi
are defined in Eq. �2.1�. At a chemical poten-

tial, �, that does not exceed the gap, GAi
is given by

GAi
�� ,� ,k�=GAi

��−� ,0 ,k�
The excitations are then given by the locations of the

poles in G2D RPA. These poles then imply that the excitations
have the dispersion relation

Ei�kx,ky� = � −
ti
ef f�ky�

2
� ��EAi

�kx� − ti
ef f�ky�/2�2 + �A

2 .

�3.6�

For sufficiently large ti
ef f a Fermi surface forms �found by

solving Ei=0� consisting of electron and hole pockets. The
type of pocket is determined by the sign of the effective
hopping

ti
ef f�ky�  2�A + 2� → electron pocket,

ti
ef f�ky� � − 2�A + 2� → hole pocket. �3.7�

In our conventions a positive chemical potential favors hole
pocket formation while disfavoring electron pockets. As
ti
ef f�ky� grows beyond this minimal value, the pockets grow

in size. We take the hopping such that

ti
ef f�ky − Ky� = − t0�1 − �ky − Ky�2/�0

2 + ¯� Ky � 0, � �/2
t0�1 − �ky − Ky�2/�0

2 + ¯� Ky � � �/4, � 3�/4,
� �3.8�

4,j=1,...,4

n−1 n n+1

1 2 3 4 1 2 3 4 1 2 3 4

n+1, n
t

FIG. 2. An array of four-leg ladders. As an example of the
hopping assumed in the RPA analysis, we show how electrons can
hop between the fourth chain of the nth four-leg ladder and the
chains on the n+1th ladders.
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where we have introduced �0 as the small parameter guaran-
teeing that the RPA is a good approximation.

The dispersion relations of the quasiparticles near the hole
pockets are

Ei�kx,ky� =
�kx − Kxi�2

2m�i
+

�ky − Ky�2

2m�i
− �Fi, �3.9�

where

Kxi = � KFAi
�

ti
ef f�0�
2vFi

, �Fi =
��iti

ef f�0��2

8m�ivFi
2 ,

�i = 1 −
4

�ti
ef f�0��2 ��2 − �2 + �ti

ef f�0���1/2
,

m�i =
�0

2

2ti
ef f�0�

, m�i =
ti
ef f�0� − 2�

2vFi
2 .

In Fig. 3 are plotted the expected Fermi pockets. On the
left-hand side �lhs� of Fig. 3 are plotted the pockets found at
zero chemical potential while on the right-hand side �rhs� are
plotted the pockets for a chemical potential such that
2�A+2� t02�A−2�. For such a condition one obtains
only hole pockets. We see that hole pockets occur in the
vicinity of ��� /2, �� /2�.

1. Luttinger sum rule

The Luttinger sum rule �LSR� for the single-particle
Green’s functions at the particle hole symmetric point takes
the form

n =
2

�2��2�
G��=0,k�0

ddk , �3.10�

where n is the electron density. The corresponding Luttinger
surface of G�� ,k� is defined as the loci of points in k space
where G��=0,k� changes sign. These sign changes occur

both at the poles and the zeros of G. In order to apply the
Luttinger sum rule, we must take G�� ,k� to be one of GA1/2

2D ,
i.e., we must apply the LSR to each band separately �see Eq.
�3.3� for the definition of GA1/2

2D �. �We only apply the LSR to
the electrons in the A bands—the LSR also holds separately
for electrons in the B bands.�

At the particle-hole symmetric point, zeros are present in
GA1/2

2D �0,k� along the lines ky = �KFAi
. In the absence of

pockets the LSR is satisfied because of these zeros. And
when ti

ef f becomes strong enough so that pockets form, the
appearance of equally size electron and hole pockets on ei-
ther side of �KFAi

ensure that the Luttinger sum rule contin-
ues to hold.

Introducing a finite chemical potential �with ���A /2�
leaves the LSR violated as expressed in Eq. �3.10�. However
it continues to hold in a modified form at least in the absence
of pockets. Because in a finite chemical potential, the ladder
Green’s functions are given by GAi

�� ,� ,k�=GAi
��−� ,0 ,k�,

the LSR holds if we consider the sign changes the Green’s
function undergoes not at �=0 but at �=�.

2. Superconducting Instability

The residual interactions between the Fermi pockets and
the cooperons will lead to instabilities in the RPA solutions
as temperature goes to zero. Provided a finite chemical po-
tential is present the leading instability will be to a supercon-
ducting state. While gapless quasiparticles only exist in the A
bands, both A and B bands will go superconducting simulta-
neously. The general form of the cooperon-quasiparticle in-
teraction is

H	QP = �
�=A,B;k,q

���k,q�
�NLa�1/2 �	��q��QPA

† �k,q� + H.c.�

+
1

2 �
q,k,k�

g�q,k,k��
NLa

�QPA
† �k,q��QPA�k�,q� ,

k

������������������������������������������������������������

���������������������������������������������

���������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

���������������������������������������������

���������������������������������������������

������������������������������������������������������������

������������������������������������������������������������

k

hole pocket

electron pocket

0
x
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FIG. 3. �Color online� The electron and hole pockets of an array of weakly coupled four-leg ladders shown in a periodic zone scheme.
On the lhs of the figure are pockets at zero chemical potential. On the rhs of the figure are pictured the pockets for finite chemical potential
such that the interladder hopping satisfies 2�A+2� �t0�2�A−2�.
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�QPA
† �k,q� = �����A1�

† �k + q�A1��
† �− k�

− A2�
† �k + q�A2��

† �− k�� . �3.11�

Here L is the length of the ladders, a is the interladder spac-
ing, and N is the number of ladders in the array. 	A,B are the
cooperon fields whose bare propagators are defined as

D�
0��n,k� = �T	��k,�n�	�

†�k,�n��0

=
vF�

− �i�n − 2��2 + ��
2 + �vF�kx�2 . �3.12�

We see that g has the dimensionality of energy� length2 and
�� has the dimensionality of energy� length1/2.

The different terms in Eq. �3.11� have different origins.
The strongest interactions are presumably �� as this term
already exists for uncoupled ladders. Interladder interactions,
such as interladder Coulomb repulsion, also contribute to ��.
However interladder hoping does not—this contribution is

suppressed due to a mismatch between the Fermi momenta
of the Ai and Bi bands. The coupling g is smaller than ��: it
arises only in second-order perturbation theory from intral-
adder interactions and from presumed weak interladder Cou-
lomb interactions.

The pair susceptibility for the quasiparticles �QPA in an
RPA approximation �see the bottom of Fig. 4� is given by

�QPA
RPA��n,q� =

1

LNa
�

k1,k2

�
0

�

d�ei�n��T�QPA�k1,q,���QPA
† �k2,q,0�� =

2C��n,q�

1 + g�q�C��n,q� − 2 �
�=A,B

��
2�q�C��n,q�D�

0��n,q�
.

�3.13�

We have assumed that the couplings g�q ,k ,k�� and ���k ,q� are such that we can ignore their dependence on k and k�. Here
C��n ,q� is the Cooper bubble

C��n,q� = 2� dkxdky

4�2  f��A1�k + q�� − f�− �A1�− k��
i�n − �A1�k + q� − �A1�− k�

+ ��A1 ↔ �A2�� . �3.14�

Here �A1/2
�k� are the bare dispersions of the A1/2 quasiparticles. As T→0, C��n ,q=0� develops a logarithmic divergence:

C��n ,q=0�	�m�m� log�
�F+�

T �.
The pair susceptibility for the cooperons fields has a similar RPA form �see top of Fig. 4�

��
RPA��n,q� = �

0

�

d�ei�n��T	��q,��	�
†�q,0�� = D�

0��n,q� + �D�
0��n,q��2��

2�q��QPA
RPA��n,q�

=
D�

0��n,q��1 + g�q�C��,q�� − 2D�̃
0��n,q�C��n,q���̃

2�q�

1 + g�q�C��n,q� − 2 �
�=A,B

��
2�q�C��n,q�D�

0��n,q�
. �3.15�

where Ã=B , B̃=A. The superconducting instability occurs when the denominator in Eqs. �3.3� and �3.5� vanishes at
�n=0, q=0, that is

C�0,0��g�0� − 2 �
�=A,B

��
2�0�

vF�

��
2 − 4�2� − 1 = 0. �3.16�

We note that this vanishing occurs simultaneously in all channels. If g0 �though interladder Coulomb repulsion is repulsive,
the interactions between quasiparticles on a given ladder is attractive leaving the sign of g�0� indeterminate� the instability
occurs only when the chemical potential approaches sufficiently close to �A /2 so that the resulting effective interaction
becomes attractive. This chemical potential corresponds to minimal doping at which superconductivity appears. Taking �A
��B, the corresponding transition temperature takes the form

Tc = max�Tc1,Tc2�; Tci 	 �Fi exp
1

�m�im�i
� 2�A

2�0�vFA

��A
2 − 4�2�

− g�0��−1

, �3.17�

where

+

= + +

=

FIG. 4. A schematic of the diagrams summed in the RPA ap-
proximation of the cooperon susceptibility �top� and the quasiparti-
cle pairing susceptibility �bottom�. The thin lines �straight and
dashed� represent the bare propagators �quasiparticle and coop-
eron�. The thick lines represent the full propagators. The wavy line
represents the Cooper interaction between quasiparticles.

KONIK, RICE, AND TSVELIK PHYSICAL REVIEW B 82, 054501 �2010�

054501-6



�Fi =
�i

2

4

�ti
ef f�0��2

ti
ef f�0� − 2�

.

If we suppose that � and ti
ef f are such that we only have hole pockets, the density of dopants is equal to

x��� = �
i=A1,A2

�0

27/2�2�ti
ef f�0��1/2

�2�A + �ti
ef f�0�� + 2���− 2�A + �ti

ef f�0�� + 2��
��ti

ef f�0�� + 2�
. �3.18�

If we denote the critical doping as xc��=�A /2� where the A
cooperon becomes soft, we see that the transition tempera-
ture behaves as Tci�exp�−��xc−x�� as x approaches xc, that
is to say, the transition temperature has a strong dependence
on doping. It should be emphasized that this critical doping
xc as defined above does not coincide with the optimal dop-
ing as typically understood. Optimal doping can be thought
of as the doping level associated with a change in the Fermi-
surface topology. However in this understanding our model
always remains in the underdoped regime since the quasipar-
ticle Fermi surfaces remain small as far as the interladder
tunneling remains much smaller than the gap of the outer �B�
band pair. We also note that our model putatively predicts a
small but finite Tc at arbitrarily small doping. We, of course,
do not believe this particular prediction is relevant to the
physics of the cuprates.

B. Scenario 2

We now consider the second scenario where �B� t�

��A. Because t� is much larger than �A but smaller than
�B, the effects of the interactions are wiped out in the A
bands while preserved in the B bands. In particular, a gapful
cooperon still exists on the B bands while the coupled A
bands appear as an anisotropic two-dimensional Fermi liq-
uid.

We can distinguish two parameter ranges in this scenario.
At small dopings ���B /2, the B cooperons remain gapped.
The effective Hamiltonian for the two-dimensional Fermi
liquid in the A bands and the cooperons in the B bands ap-
pears as

H2D = �
k

�1�k�A1
†�k�A1�k� + �2�k�A2

†�k�A2�k�

+ �
k

EBc
�kx�	B

†�k�	B�k� ,

�i�k� = EAi
�kx� + ti

ef f�ky� ,

EBc
�kx� = �kx

2 + �B
2 − 2� , �3.19�

where EAi
�kx� is given in Eq. �2.1� and ti

ef f�ky� in Eq. �3.4�.
We illustrate the two-dimensional Fermi surface of the A
bands in Fig. 5.

The form of the quasiparticle-cooperon interaction is that
of Eq. �3.13� �though of course, now we have no A cooperon
and so this coupling is absent�. This system, like in Scenario

1, has a pairing instability to superconductivity. The pairing
susceptibilities in an RPA approximation take a similar form
as for Scenario 1

�QPA
RPA��n,q� =

2C��n,q�
1 + g�q�C��n,q� − 2�B

2�q�C��n,q�DB
0��n,q�

,

�B
RPA��n,q� =

Di
0��n,q��1 + g�q�C��,q��

1 + g�q�C��n,q� − 2�B
2�q�C��n,q�DB

0��n,q�
.

�3.20�

where C��n ,q� is defined as in Eq. �3.15�.
As we no longer have pockets as in Scenario 1 but instead

have an anisotropic 2D Fermi liquid whose Fermi surface
consists of slightly deformed lines �see Fig. 5�, the divergent
temperature behavior of C�0,0� now takes the form

C�0,0� =
1

a�vFA
log
EFA1

EFA2

T2 � . �3.21�

Because the A quasiparticles are already gapless, a
finite � dopes the A bands with doping xA���. Thus
EFAi

���=EFAi
��=0�−�vFA. If we denote the critical doping,

�c, as the doping when the B cooperon becomes soft
�i.e., �c=�B /2� and xc

A=xA��c� the corresponding doping of

y

k
0
x

KFA
2

KFA
1

−KFA
2

−KFA
1

3π/4

π

π/2

π/4

0

−π/4

−π/2

−3π/4

−π

Fermi
surface

k

FIG. 5. �Color online� The Fermi surface of the A bands in a
periodic zone scheme.
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the A bands, we can rewrite the form of the B cooperon
propagator, DB

0�0,0�, as

DB
0��n = 0,q = 0� �

vFB

4�2vFA
2 a2��xc

A�2 − x2�
. �3.22�

Again we emphasize that the critical doping xc
A as defined

above does not coincide with optimal doping—in this model
we are always in the underdoped regime. For this range of
doping we obtain a transition temperature of the form

Tc = ��FA1�FA2�1/2exp�−
�vFA��xc

A�2 − x2�
�B

2�0�vFB

�2a3vFA
2 −

g�0���xc
A�2 − x2�
a

�
�3.23�

and we see that the critical temperature grows extremely fast
with doping, similar to the transition temperature determined
in Scenario I.

Equation �3.23� ceases to be valid in the region, xxc
A,

where the holes penetrate into the outer B bands. Here the
O�8� Gross-Neveu model governing the B bands undergoes a
crossover into a O�6��U�1� Gross-Neveu model. The ap-
proximation in Eq. �3.22� is no longer valid since the B coop-
eron becomes gapless and its propagator at � ,k=0 becomes
more singular. At the same time the velocity of the phase
fluctuations becomes small and these fluctuations can be
treated as slow modes. Integrating over the nodal fermions
one obtains the effective Lagrangian for the phase fluctua-
tions

L = �
n
�− Jccos1

2
�
n�x� − 
n+1�x���

+
K���
8�

�vF�����x�n − 4��2 + vF�������n�2� −
M

2
cos��� ,�

�3.24�

where n is a sum over ladders and Jc is the effective Joseph-
son coupling between ladders. As we have already noted the
parameter K is renormalized by the Coulomb interaction to
be slightly less than 1. vF��� is more dramatically affected,
taking the form vF����vFB� 2�

�B
−1�1/2 so that it vanishes at

x=xc �or equivalently �=�B /2�. As a side remark we note
that there is an alternative way of presenting the effective
Hamiltonian. The above Lagrangian �Eq. �3.24�� is the con-
tinuum limit of the following model:

H = �
n,m

�− J��n,m+1
+ �n,m

− + H.c.� − Jc��n+1,m
+ �n,m

− + H.c.�

+ ��− 1�nM − 2���n,m
3 � , �3.25�

where �a are Pauli matrix operators and J�M. The equiva-
lence is established by the standard Jordan-Wigner transfor-
mation of the � operators with a subsequent bosonization. In
the continuum limit, �− becomes the order parameter field
ei�
/2�. The model presented above is a model of anisotropic

spin-1/2 magnet on a 2D lattice with a staggered �M� and
uniform magnetic fields �2��. This form of the Hamiltonian
has been proven to be very convenient for numerical calcu-
lations yielding promising results for the transport.45

We again estimate the transition temperature using an
RPA argument. At T=0 the doping of the entire system �both
the A and the B bands� is

x = ��A + c
�B

vFBa

2�

�B
− 1�1/2

, �3.26�

where c is a constant and �A= 2
avFA� . The detailed form of the

cooperon propagator for a single chain at T=0 can be ex-
tracted from Ref. 46. However to obtain an estimate for Tc, it
is enough to use the finite-temperature Luttinger liquid ex-
pression for the cooperon propagator

DB
0��,x� = Z� T

�FB����1/2K 1

sinh�T��x/vFB��� + i���
,

�3.27�

where Z is a numerical constant. Thus

DB
0�� = 0,q = 0� �

vFB

NL

2�

�B
− 1�1/2−1/2K

T−2+1/2K.

�3.28�

Substituting the latter expression into RPA expressions for
the pairing susceptibilities �Eqs. �3.20�� we obtain an esti-
mate for the critical temperature on doping as follows:

Tc � 
x −
�B�A

2
�2−2K/4K−1

. �3.29�

This dependence on the doping is much weaker than
�Eq. �3.27��. It holds in the region where phase fluctuations
are already strong.

Thus we have obtained two regimes with different doping
dependence of Tc. The first one is the BCS-like with Tc given
by Eq. �3.23�. It corresponds to the lowest doping levels. The
other regime, which in our model still describes a situation of
an anisotropic one-dimensional-like Fermi surface, is the re-
gime with strong phase fluctuations. The mean-field transi-
tion temperature in this regime is given by Eq. �3.29�. A
further increase in doping presumably will lead to a change
in the Fermi-surface topology and is not considered in this
paper.

IV. DISCUSSION

Phenomenological models based on coupled fermions and
bosons similar to that derived here, have been proposed
much earlier in Refs. 47–50 to describe the high-temperature
superconductors. The closest similarity are to the models
proposed by Geshkenbein, Ioffe, and Larkin,49 and by Chu-
bukov and Tsvelik.50,51 Both these phenomenological models
examined Fermi arcs centered on the nodal directions,
coupled in the d-wave channel to cooperons associated with
the antinodal regions. The model studied in Ref. 49 had dis-
persionless cooperons which provided BCS-style coupling
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for the nodal quasiparticles. The result was a superconduct-
ing transition with weak fluctuations, similar to our x�xc
case. In the model considered in Ref. 50 the cooperons pos-
sessed a one-dimensional dispersion which resulted in strong
fluctuations as takes place in our case for xxc. The authors
of Refs. 49–51 considered the fluctuation regime above Tc
when the cooperon energy is close to the chemical potential
and drew comparisons to experiments in several underdoped
cuprates. The key ingredients controlling superconductivity
in the array of four-leg Hubbard ladders that we have con-
sidered in this paper, are a small residual Fermi surface �ei-
ther pockets as in Scenario I or arcs as in Scenario II�, which
is coupled in the d-wave Cooper channel to a finite-energy
cooperon associated with the pseudogap responsible for the
partial truncation of the Fermi surface. The properties of a
weak coupling four-leg Hubbard ladder near to half-filling
are used to obtain these key ingredients. Our goal is to derive
a tractable model containing the important features that are
relevant to high-temperature superconductivity in the cu-
prates. In order to assess the relevance of our model to this
goal, clearly one must examine whether these key ingredi-
ents are present in a two-dimensional Hubbard model on a
square lattice near half-filling.

As we mentioned above, earlier numerical
renormalization-group studies on the two-dimensional Hub-
bard model were interpreted as pointing toward a similar
pairing mechanism arising from enhanced pairing correla-
tions present in a condensate that truncates the Fermi surface
in the antinodal regions. There are of course two reservations
in these earlier works. First, the one loop approximation in
the numerical renormalization-group studies limits them to at
most moderately strong onsite repulsive interactions. Sec-
ond, the renormalization-group studies per se break down
when the scattering vertices flow to strong coupling and the
nature of the resulting low-energy or low-temperature effec-
tive action is a difficult problem which could only be sur-
mised rather than explicitly derived. These two weaknesses
make it imperative to examine the question whether these
key ingredients are present also for strong coupling.

The most reliable strong coupling calculations are exact
diagonalization studies of strong coupling Hamiltonians. The
only limitation is the finite cluster size which currently is
limited to small clusters containing up to 32 sites and one,
two, and four holes. Leung and his co-workers in Refs.
33–35 have reported a series of calculations for these clusters
using the strong coupling t-J model and its extensions to
include longer range hopping and interactions. The main
conclusions of these calculations are as follows. The allowed
set of k points in a 32-site cluster with periodic boundary
conditions contain both the four nodal �� /2,� /2� and two
antinodal points �� ,0� and �0,��. A single hole enters at a
nodal point. For two holes there are two different states that
are possible ground states depending on the parameter val-
ues. For the plain t-J model with only nearest-neighbor hop-
ping a two hole bound pair state with d�x2−y2� symmetry is
the ground state on the 32-site cluster for J / t0.28. The
binding energy is quite small at J / t=0.3 but grows with in-
creasing J / t. An extrapolation from finite size clusters to the

infinite lattice however suggests that the pair state is no
longer the ground state at J / t=0.3 but an excited state with
an energy of approximately 0.17t.33 The inclusion of longer
range interactions and hopping in the t-J model increases the
energy of the pair state further and confirms the conclusion
that for parameter values relevant to cuprates the ground
state of the cluster has two unbound holes in the nodal
states.34 Extending the calculations to the 32-site clusters
with four holes, which corresponds to a doping of 1/8, shows
all four holes entering into nodal states with no signs of
pairing correlations.35 In view of the prominent bound pair
excited state for two holes, a low-energy excited state with
two of the holes in a bound state may also be expected here.
However at present there is no information on this question
to the best of our knowledge.

Leung and co-workers33–35 concluded from these calcula-
tions that at low densities holes entered the nodal regions,
possibly in pockets, and as a result there was no evidence for
d-wave pairing correlations in the ground state for realistic
values of the parameters in t-J models. However the analysis
presented here suggests a more optimistic conclusion. First
we note that the nodal points in the 32-site cluster are very
special because exactly at these points the coupling in a Coo-
per channel to a d-wave cooperon vanishes by symmetry.
Thus if we interpret the d-wave pair excited state as evidence
for a finite energy cooperon in the t-J model and its exten-
sions, then as the wave vector of the state’s holes at finite
doping extend to a finite range around the exact nodal points,
a d-wave pairing attraction is generated through the coupling
to the d-wave cooperon, similar to the scenarios we dis-
cussed earlier. Note an earlier study for two holes on smaller
clusters by Poilblanc et al.52 concluded in favor of the inter-
pretation of the two hole bound state as a quasiparticle with
charge 2e and spin 0, which would be an actual carrier of
charge under an applied electric field. In other words they
concluded that a cooperon is present in the strong coupling
t-J model at low doping. A more detailed analysis of the
origin of the pairing in this state was published recently by
Maier et al.53 Note also the hole density in the case of two
holes in a 32-site cluster is very low so that the supercon-
ducting order we are postulating should coexist with long-
range antiferromagnetic order. There is considerable evi-
dence both numerical, in variational Monte Carlo
calculations, and experimental, in favor of such coexistence,
as discussed in the recent review by Ogata and Fukuyama.11

We conclude that there is strong evidence that the pairing
mechanism in the present model is not confined to weak
coupling and ladder lattices that we have treated here but
will also operate in the strong coupling t-J model on a square
lattice at low doping.
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